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Exact generalized Langevin equations are derived for arbitrarily nonlinear 
systems interacting with specially chosen heat baths. An example is displayed 
in which the Langevin equation is nonlinear but approximately Markovian. 

KEY W O R D S :  Brownian motion; noise; nonlinear; nonequilibrium; 
generalized dynamics. 

The purpose of this paper is the derivation of a class of  generalized Langevin 
equations describing the motion of a system interacting with a heat bath. 
No restriction is placed on the properties of the system: in particular, its 
equations of motion may be arbitrarily nonlinear. The heat bath is a collection 
of harmonic oscillators, and the interaction has a special form. 

The possibility of a derivation of this sort was suggested by work of  
Ford et a/. (1) on the statistical mechanical theory of  Brownian motion. 

Mori (~) has shown how to derive linearized generalized Langevin 
equations for arbitrary systems close to thermal equilibrium. Little is known, 
however, about Brownian motion in nonlinear systems, so that explicit 
examples of  the type treated here may be useful as illustrations of  what may 
be expected. 

Although our derivation can be carried out within the framework of  
conventional Hamiltonian dynamics, we use instead a form of "generalized 
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dynamics" which does not explicitly distinguish between canonical coordinates 
and momenta.  This new form has the advantage of compactness of  notation 
and greater generality than Hamiltonian dynamics. It was used, e.g., by 
Kerner (~1 in his development of  the statistical mechanics of  interacting 
biological species. 

At the end of the paper we give a specific example of  our general results 
in the conventional Hamiltonian form. 

The state of  the system is determined by a set of system variables, 
denoted collectively by the vector X. Similarly, the state of  the bath is 
determined by the vector Y. At time t these vectors become Xt and Yr. 

We want to find an equation of motion for the system vector Xt when 
the initial bath vector Y0 has a certain statistical distribution. 

The equations of motion of Xt and Y~ are specified as follows. We 
introduce a function H(X, Y) which is analogous to the Hamiltonian function. 
This is separated into a system part  H~(X) which depends only on the state 
of  the system, and a bath part  HffX, Y) which depends on the state of both 
system and bath: 

H(x ,  r )  = Hs(X) + H~(X, r )  O) 

Next we introduce two antisymmetric matrices A (in the system space) 
and B (in the bath space). Then the equations of motion are given by 

dX/dt = A �9 V~(Hs + Ho) (2) 

dY/at = B �9 V~H~ (3) 

It  is easy to verify that H(X, Y) is a constant of  motion; this is a con- 
sequence of the antisymmetry of A and B. 

The matrix A may be an arbitrary function of X, but B is a constant 
matrix. 

We note that Hamil ton 's  equation may be written in this form. Suppose, 
e.g., that the system variables are X = (Q, P), where Q and P are a coordinate 
and its conjugate momentum. Then if H is a Hamiltonian function, A is the 
matrix 

When there are many pairs of coordinates and momenta,  then A can be 
represented as the direct product of such matrices. 

The system function Hs is an arbitrary function of X. For the bath 
function Hb we take a quadratic form. Let K be a symmetric nonsingular 
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matrix in the bath space. Let a ( X )  be an arbitrary vector function of X in the 
bath space. Then we define the bath function as 

H b ( X ,  Y) = l [ y _  a(X)]r . K "  [ Y -  a(X)] (5) 

The transpose of a vector or matrix is denoted by the superscript T. 
The equation of motion of the bath variables is now 

d Y / d t  = B �9 K "  [ Y  - -  a(X)l (6) 

Suppose that we know the time dependence of X t  �9 Then this may be solved 
as a linear inhomogeneous differential equation: 

f .  

Y t  = exp(tB �9 K )  . Yo - -  Jo d t '  exp(t 'B �9 K ) .  B . K .  a(Xt_~, )  (7) 

An integration by parts leads to another form, 

Y t  - -  a ( X t )  = exp(tB.  K)"  [Y0 --  a(X0)] 

q- fo d t '  exp(t 'B �9 K )  " ( d / d t ' )  a (Xt_~ ' )  (8) 

Now we turn to the equation of motion of the system. For convenience 
of notation we define 

V ( X )  ~ A �9 VxHs(X) (9) 

and we introduce the matrix W ( X ) ,  defined by 

W ( X )  = V~.ar(X) (10) 

The equation of motion of X becomes 

d X / d t  = V ( X )  - -  A . W ( X )  �9 K .  [ Y  - -  a(X)] (1 I) 

By using the matrix W, we may also write 

( d / d t ' ) a ( X t _ t , )  = - -  W r ( X t _ ~  ") �9 2t_~" (12) 

To proceed, we recognize that X is a function of t. In the right-hand 
side of  Eq. (11) we substitute Eq. (8). This leads to 

t 

d X ~ / d t  --- V ( X t )  q-  fo d t '  A �9 W ( X t )  �9 K "  exp( t 'B .  K ) .  w r ( x ~ _ ~ , )  �9 X t -~"  

- -  A �9 W ( X t )  " K "  exp(tB - K ) '  [Y0 --  a(X0)] (13) 

This is essentially our final result. The motion of X, is expressed in terms of 
its own history from zero to t, and the bath variables enter only through 
their initial values. 
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However, a further change in notation will put our result into a more 
transparent form. We define a "noise" source by 

F( t )  = - - K "  exp(tB �9 K ) "  [Yo --  a(Xo)] (14) 

The statistical properties of  the noise are determined as follows. We consider 
an ensemble of initial states, in which )Co is held fixed but the initial bath 
variables I10 are drawn at random from a canonical distribution characterized 
by a temperature T: 

Prob(Y0/givenX0) ~ exp(--  Hb/k  T)  05) 

In this ensemble the mean and dispersion of Y0 are 

( Yo) = a(Xo) 

([Yo - -  a(Xo)][Yo - -  a(Xo)] r )  = k T K  -~ 
(16) 

Note that F( t )  is a linear combination of variables that have a Gaussian 
distribution, so that F(t)  has itself a Gaussian distribution. The mean and 
dispersion of the noise are 

( F ( t ) )  = 0 

( F ( t ) F r ( t ' ) )  = k T L ( t  - -  t ') (17) 

L( t )  = K .  exp(tB �9 K) 

This defines the "friction coefficient" L( t ) .  

In deriving this expression for L( t ) ,  we used the identity 

K - 1  �9 [exp(tB �9 K)] r = exp(-- tB �9 K ) .  K -1 (18) 

which can be verified, e.g., by series expansion of both sides. 
The resulting generalized Langevin equation is 

dX~/dt = V(XO + fo dt '  A �9 W(XO " L ( t ' )  . Wr(X~_c)  �9 ]Q_~, 

-}- A �9 W(XO " F( t )  (19) 

Equation (17) is the fluctuation-dissipation theorem relating the noise 
intensity to the transport  coefficient. 

The preceding derivation has led to the desired result, but it is somewhat 
formal and abstract. As an illustration of the structure of  the generalized 
Langevin equation, we consider next a special case. 



Nonlinear Generalized Langevin Equations 219 

The system is a particle in a potential. The coordinate and conjugate 
momentum are Q and P, the mass is M, and the potential is U(Q). The 
system funct ion--or  Hamiltonian--is 

Hs = ( p 2 / 2 M ) - ~  U(Q) (20) 

The bath oscillators have coordinates and momenta qj and Ps, where j = 
1, 2 , . ,  N. The oscillators have unit mass, and thej th  oscillator has a frequency 
~oj. Then the bath funct ion--or  Hamiltonian--is 

H~ ~- Z �89 + Z �89 --  YJQ/'wg) 2 (21) 

With some effort, this Hamiltonian system can be rewritten in the generalized 
dynamics notation used in the preceding derivation. In particular, the vector 
a(X),  which describes the coupling of system to bath, is linear in the system 
coordinate. Because of the simplicity of the example, however, it is probably 
easier to repeat the entire derivation explicitly in Hamiltonian form. 

Either way, one obtains the generalized Langevin equation 

M dQ~/dt = Pt 
P t 

de~/dt = --  u ' ( o o  - Jo dr' ~(t')P~_t./M -? Y ( t )  (22) 

As before, the noise ~ ( t )  is a linear combination of all oscillator coordinates 
and momenta. The friction coefficient ~(t) is 

~(t) = ~, (yj/~oj) 2 cos ~ojt (23) 

TJhe fluctuation-dissipation theorem takes the form 

(~-(t)> ~ 0, <o~(t)-Y(t')> = kT~( t  --  t') (24) 

T]he friction is linear in the system momentum, and the friction coefficient 
is a simple function of the frequencies wj and the coupling constants y j .  

This generalized Langevin equation is exact. It differs from the type 
obtained by Mori's scheme ~2) in the presence of an arbitrary nonlinear force 
--U"(Q). Further, its validity is not restricted to small departures from 
thermal equilibrium. 

Our Langevin equation is non-Markovian; the frictional term contains 
a memory function ~(t). As noticed by Ford et al. ~11 in a similar connection, 
a special choice of frequencies and coupling constants can lead to an equation 
that is approximately Markovian. (in distinction to their work, we do not 
restrict ourselves to a model of the lattice dynamics type.) 

First, we suppose that there are very many oscillators in the heat bath, 
with a distribution of frequencies. Then, we treat the frequency distribution 
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as continuous. (The only serious effect here is the elimination of Poincar6 
recurrences at very long times.) We use a frequency distribution of the Debye 
type, 

t3co2/coa 2, co < coa (25) 
g(co) = 10, co > cod 

where coa is a cutoff frequency. Sums over oscillator frequencies are replaced 
by integrals according to 

Z --+ N f dco g(co) (26) 

Further, we suppose that all coupling constants are equal, 

~,~ = y / N  ~/2 (27) 

In this approximation the friction coefficient becomes 

~(t) = (372/co~2)(sin coet)/t (28) 

I f  the system momentum varies sufficiently slowly over times of the order 
of 1/coe, then a delta-function approximation may be used for ~(t), 

~(t) ~'~ 2~o S(t); ~0 = 37r?'2/Zcoa ~ (29) 

This leads to the Markovian approximation 

d P J d t  = - -  U'(Qt)  - ~oPt /M -k  . ~ ( t )  (30) 

The preceding example shows that it is possible to obtain an approxi- 
mately Markovian, but nonlinear, Langevin equation from a Hamiltonian 
model. 

The further special case where U = 1Q2 + ~/3Q4 was studied recently 
by Bixon and Zwanzig (~) as an example of fluctuation-renormalization of a 
transport  equation. 
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